首页> 外文OA文献 >Unsupervised Joint Mining of Deep Features and Image Labels for Large-scale Radiology Image Categorization and Scene Recognition
【2h】

Unsupervised Joint Mining of Deep Features and Image Labels for Large-scale Radiology Image Categorization and Scene Recognition

机译:无监督联合挖掘深部特征和图像标签   大规模放射图像分类与场景识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The recent rapid and tremendous success of deep convolutional neural networks(CNN) on many challenging computer vision tasks largely derives from theaccessibility of the well-annotated ImageNet and PASCAL VOC datasets.Nevertheless, unsupervised image categorization (i.e., without the ground-truthlabeling) is much less investigated, yet critically important and difficultwhen annotations are extremely hard to obtain in the conventional way of"Google Search" and crowd sourcing. We address this problem by presenting alooped deep pseudo-task optimization (LDPO) framework for joint mining of deepCNN features and image labels. Our method is conceptually simple and rests uponthe hypothesized "convergence" of better labels leading to better trained CNNmodels which in turn feed more discriminative image representations tofacilitate more meaningful clusters/labels. Our proposed method is validated intackling two important applications: 1) Large-scale medical image annotationhas always been a prohibitively expensive and easily-biased task even forwell-trained radiologists. Significantly better image categorization resultsare achieved via our proposed approach compared to the previousstate-of-the-art method. 2) Unsupervised scene recognition on representativeand publicly available datasets with our proposed technique is examined. TheLDPO achieves excellent quantitative scene classification results. On the MITindoor scene dataset, it attains a clustering accuracy of 75.3%, compared tothe state-of-the-art supervised classification accuracy of 81.0% (when both arebased on the VGG-VD model).
机译:深度卷积神经网络(CNN)在许多具有挑战性的计算机视觉任务上的快速而巨大的成功,在很大程度上得益于清晰注解的ImageNet和PASCAL VOC数据集的可访问性。当采用传统的“ Google搜索”和众包方式很难获得批注时,要进行的研究很少,但是却至关重要且困难。我们通过提出用于深度CNN特征和图像标签联合挖掘的无循环深度伪任务优化(LDPO)框架来解决此问题。我们的方法从概念上讲是简单的,并且基于更好标签的假设“收敛”,从而导致训练有素的CNN模型,进而提供更具区分性的图像表示,以促进更有意义的聚类/标签。我们提出的方法在两个重要应用中得到了验证:1)即使对于训练有素的放射科医生来说,大规模医学图像标注也一直是一项昂贵而又容易产生偏见的任务。与以前的最新方法相比,通过我们提出的方法可实现更好的图像分类结果。 2)研究了我们提出的技术在有代表性和可公开获得的数据集上的无监督场景识别。 LDPO获得了出色的定量场景分类结果。在MITindoor场景数据集上,聚类精度为75.3%,而最新的监督分类精度为81.0%(当两者均基于VGG-VD模型时)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号